Abstract
Plant 14-3-3 proteins regulate important cellular processes, including plant immune responses, through protein-protein interactions with a wide range of target proteins. In rice (Oryza sativa), the GF14e gene, which encodes a 14-3-3 protein, is induced during effector-triggered immunity (ETI) associated with pathogens such as Xanthomonas oryzae pv. oryzae (Xoo). To determine whether the GF14e gene plays a direct role in resistance to disease in rice, we suppressed its expression by RNAi silencing. GF14e suppression was correlated with the appearance of a lesion-mimic (LM) phenotype in the transgenic plants at 3 weeks after sowing. This indicates inappropriate regulation of cell death, a phenotype that is frequently associated with enhanced resistance to pathogens. GF14e-silenced rice plants showed high levels of resistance to a virulent strain of Xoo compared with plants that were not silenced. Enhanced resistance was correlated with GF14e silencing prior to and after development of the LM phenotype, higher basal expression of a defense response peroxidase gene (POX22.3), and accumulation of reactive oxygen species (ROS). In addition, GF14e-silenced plants also exhibit enhanced resistance to the necrotrophic fungal pathogen Rhizoctonia solani. Together, our findings suggest that GF14e negatively affects the induction of plant defense response genes, cell death and broad-spectrum resistance in rice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.