Abstract

We introduce a novel theory of gravity based on the inverse of the Ricci tensor, that we call the anticurvature tensor. We derive the general equations of motion for any Lagrangian function of the curvature and anticurvature scalars. We then demonstrate a no-go theorem: no Lagrangian that contains terms linear in any positive or negative power of the anticurvature scalar can drive an evolution from deceleration to acceleration, as required by observations. This effectively rules out many realizations of this theory, as we illustrate in detail in a particular case. Finally, we speculate on how to circumvent the no-go theorem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.