Abstract
In this paper, we study the Ricci flow on a closed manifold and finite time interval $[0,T)~(T < \infty)$ on which certain integral curvature energies are finite. We prove that in dimension four, such flow converges to a smooth Riemannian manifold except for finitely many orbifold singularities. We also show that in higher dimensions, the same assertions hold for a closed Ricci flow satisfying another conditions of integral curvature bounds. Moreover, we show that such flows can be extended over $T$ by an orbifold Ricci flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.