Abstract

In this paper it is shown that a three-dimensional non-cosymplectic quasi-Sasakian manifold admitting Ricci almost soliton is locally $$\phi $$-symmetric. It is proved that a Ricci almost soliton on a three-dimensional quasi-Sasakian manifold reduces to a Ricci soliton. It is also proved that if a three-dimensional non-cosymplectic quasi-Sasakian manifold admits gradient Ricci soliton, then the potential function is invariant in the orthogonal distribution of the Reeb vector field $$\xi$$. We also improve some previous results regarding gradient Ricci soliton on three-dimensional quasi-Sasakian manifolds. An illustrative example is given to support the obtained results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.