Abstract

Applying the resolution–scale relativity principle to develop a mechanics of non-differentiable dynamical paths, we find that, in one dimension, stationary motion corresponds to an Itô process driven by the solutions of a Riccati equation. We verify that the corresponding Fokker–Planck equation is solved for a probability density corresponding to the squared modulus of the solution of the Schrödinger equation for the same problem. Inspired by the treatment of the one-dimensional case, we identify a generalization to time dependent problems in any number of dimensions. The Itô process is then driven by a function which is identified as establishing the link between non-differentiable dynamics and standard quantum mechanics. This is the basis for the scale relativistic interpretation of standard quantum mechanics and, in the case of applications to chaotic systems, it leads us to identify quantum-like states as characterizing the entire system rather than the motion of its individual constituents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.