Abstract
The giant tube worm, Riftia pachyptila, which is abundant at deep-sea hydrothermal vents, contains an extremely high density of bacterial symbionts in a specialized ‘trophosome’ tissue. Although the symbiont has not been cultured, enzymatic studies by others indicate that the symbiont is capable of hydrogen-sulfide- or sulfur-based lithoautotrophy and fixes CO2 via the Calvin-Benson cycle. Here we report additional findings for a specimen from the Guaymas Basin vent site (Gulf of California, 2000 m). Under assay conditions where activity was proportional to cell-free extract concentration, ribulose bisphosphate carboxylase/oxygenase (RuBisCO) activity was 6.3 nmol CO2/mg protein per min (30°C). This is within the range observed for non-CO2 limited cultures of sulfur bacteria. The activity vs. temperature profile suggests that the symbiont is a mesophile and not a thermophile. A substrate saturation curve shows an apparent Km (with respect to ribulose 1,5-bisphosphate) of 65 μM which is considerably lower than the single previous report for a sulfur bacterial symbiont. Strong hybridization was detected between a gene probe derived from the RuBisCO large subunit gene of Anacystis nidulans and Riftia trophosome DNA. A Rhodospirillum rubrum-derived probe also showed hybridization with the same restriction fragments of symbiont DNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.