Abstract

Transforming growth factor beta (TGFbeta1) is considered the key mediator in the process of liver fibrosis. The purpose of this investigation was to evaluate the activity of ribozymes against TGFbeta1 in a cell-free system and activated hepatic stellate cells (HSCs), and antifibrotic effect in activated HSCs in vitro and in rats. Three ribozymes targeting against TGFbeta1 mRNA were designed, and then cloned into the U1 snRNA expression cassette. The chimeric ribozymes were selected for the analysis of their performances in activated HSCs through the detection of their cleavage activities in a cell-free system. After ribozyme-encoding plasmids had been transfected into HSC-T6 cells, the effects of ribozymes on activated HSCs were evaluated through the analysis of proliferation, activation and collagen deposition of HSC-T6. The adenoviral vector expressing the ribozymes was constructed, and then delivered into rat models of hepatic fibrosis induced by carbon tetrachloride. TGFbeta1 expression was efficiently down-regulated in activated HSCs by U1 snRNA chimeric ribozymes which possessed perfect cleavage activity in a cell-free system. Further studies demonstrated that U1 snRNA chimeric ribozymes inhibited the synthesis of collagen I, reduced deposition of collagen I, suppressed BrdU incorporation, but had no effect on desmin and alpha-SMA expression in transfected HSC-T6 cells. Histological analysis demonstrated that the adenoviral vector expressing ribozyme (Rz803) could alleviate fibrotic pathology in rats treated with carbon tetrachloride. The anti-TGFbeta1 ribozymes could reverse the character of activated HSCs in vitro and improve fibrotic pathology in vivo. It indicated that TGFbeta1 could be considered as a novel candidate for a therapeutic agent against hepatic fibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.