Abstract

The RNA world hypothesis implies that coded protein synthesis evolved from a set of ribozyme catalyzed acyl-transfer reactions, including those of aminoacyl-tRNA synthetase ribozymes. We report here that a bifunctional ribozyme generated by directed in vitro evolution can specifically recognize an activated glutaminyl ester and aminoacylate a targeted tRNA, via a covalent aminoacyl-ribozyme intermediate. The ribozyme consists of two distinct catalytic domains; one domain recognizes the glutamine substrate and self-aminoacylates its own 5'-hydroxyl group, and the other recognizes the tRNA and transfers the aminoacyl group to the 3'-end. The interaction of these domains results in a unique pseudoknotted structure, and the ribozyme requires a change in conformation to perform the sequential aminoacylation reactions. Our result supports the idea that aminoacyl-tRNA synthetase ribozymes could have played a key role in the evolution of the genetic code and RNA-directed translation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.