Abstract

The ribosomal DNA (rDNA) arrays are highly repetitive and homogenous regions which exist in all life. Due to their repetitiveness, current assembly methods do not fully assemble the rDNA arrays in humans and many other eukaryotes, and so variation within the rDNA arrays cannot be effectively studied. Here, we present the tool ribotin to assemble full length rDNA copies, or morphs. Ribotin uses a combination of highly accurate long reads and extremely long nanopore reads to resolve the variation between rDNA morphs. We show that ribotin successfully recovers the most abundant morphs in human and nonhuman genomes. We also find that genome wide consensus sequences of the rDNA arrays frequently produce a mosaic sequence that does not exist in the genome. Ribotin is available on https://github.com/maickrau/ribotin and as a package on bioconda.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.