Abstract

BackgroundAging is accompanied with loss of tissue homeostasis and accumulation of cellular damages. As one of the important metabolic centers, liver shows age-related dysregulation of lipid metabolism, impaired detoxification pathway, increased inflammation and oxidative stress response. However, the mechanisms for these age-related changes still remain unclear. In the fruit fly, Drosophila melanogaster, liver-like functions are controlled by two distinct tissues, fat body and oenocytes. Compared to fat body, little is known about how oenocytes age and what are their roles in aging regulation. To characterize age- and stress-regulated gene expression in oenocytes, we performed cell-type-specific ribosome profiling (RiboTag) to examine the impacts of aging and oxidative stress on oenocyte translatome in Drosophila.ResultsWe show that aging and oxidant paraquat significantly increased the levels of reactive oxygen species (ROS) in adult oenocytes of Drosophila, and aged oenocytes exhibited reduced sensitivity to paraquat treatment. Through RiboTag sequencing, we identified 3324 and 949 differentially expressed genes in oenocytes under aging and paraquat treatment, respectively. Aging and paraquat exhibit both shared and distinct regulations on oenocyte translatome. Among all age-regulated genes, oxidative phosphorylation, ribosome, proteasome, fatty acid metabolism, and cytochrome P450 pathways were down-regulated, whereas DNA replication and immune response pathways were up-regulated. In addition, most of the peroxisomal genes were down-regulated in aged oenocytes, including genes involved in peroxisomal biogenesis factors and fatty acid beta-oxidation. Many age-related mRNA translational changes in oenocytes are similar to aged mammalian liver, such as up-regulation of innate immune response and Ras/MAPK signaling pathway and down-regulation of peroxisome and fatty acid metabolism. Furthermore, oenocytes highly expressed genes involving in liver-like processes (e.g., ketogenesis).ConclusionsOur oenocyte-specific translatome analysis identified many genes and pathways that are shared between Drosophila oenocytes and mammalian liver, highlighting the molecular and functional similarities between the two tissues. Many of these genes were altered in both oenocytes and liver during aging. Thus, our translatome analysis provide important genomic resource for future dissection of oenocyte function and its role in lipid metabolism, stress response and aging regulation.

Highlights

  • Aging is accompanied with loss of tissue homeostasis and accumulation of cellular damages

  • As oxidative stress is commonly observed in aging tissue, we first examined the age-related changes in reactive oxygen species (ROS) production in adult oenocytes

  • We noticed that young oenocytes showed much higher induction of ROS under PQ treatment than the oenocytes from middle age (Fig. 1c), suggesting the response to oxidative stress was altered in aged oenocytes

Read more

Summary

Introduction

Aging is accompanied with loss of tissue homeostasis and accumulation of cellular damages. As one of the important metabolic centers, liver shows age-related dysregulation of lipid metabolism, impaired detoxification pathway, increased inflammation and oxidative stress response. Aged liver shows reduced blood flow, loss of regenerative capacity, decreases in detoxification and microsomal proteins synthesis, increases in polyploidy, oxidative stress and mitochondrial damage [5]. Age-related increases in neutral fat levels and high-density lipoprotein cholesterol predispose aged liver to NAFLD and other liver diseases. Accumulated evidence suggests that age-related decline of liver function can be attributed to increased reactive oxygen species (ROS) production, DNA damage, activation of p300-C/EBP-dependent neutral fat synthesis [6], decreases in autophagy, increases in inflammatory responses [7, 8], and activation of nuclear factor-κB (NF-κB) pathway [4, 9]. Despite the genetic and functional analysis of liver aging and liver diseases, only a few studies have looked at the global transcriptional and translational changes during liver aging [10,11,12,13]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call