Abstract

A preponderance of textbooks outlines cellular protein synthesis (translation) in three basic steps: initiation, elongation, and termination. However, researchers in the field of translation accept that a vital fourth step exists; this fourth step is called ribosome recycling. Ribosome recycling occurs after the nascent polypeptide has been released during the termination step. Despite the release of the polypeptide, ribosomes remain bound to the mRNA and tRNA. It is only during the fourth step of translation that ribosomes are ultimately released from the mRNA, split into subunits, and are free to bind new mRNA, thus the term "ribosome recycling." This step is essential to the viability of cells. In bacteria, it is catalyzed by two proteins, elongation factor G and ribosome recycling factor, a near perfect structural mimic of tRNA. Eukaryotic organelles such as mitochondria and chloroplasts possess ribosome recycling factor and elongation factor G homologues, but the nature of ribosome recycling in eukaryotic cytoplasm is still under investigation. In this review, the discovery of ribosome recycling and the basic mechanisms involved are discussed so that textbook writers and teachers can include this vital step, which is just as important as the three conventional steps, in sections dealing with protein synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.