Abstract

Vegetative cells of Bacillus subtilis can recover from injury after high-hydrostatic-pressure (HHP) treatment at 250 MPa. DNA microarray analysis revealed that substantial numbers of ribosomal genes and translation-related genes (e.g., translation initiation factors) were upregulated during the growth arrest phase after HHP treatment. The transcript levels of cold shock-responsive genes, whose products play key roles in efficient translation, and heat shock-responsive genes, whose products mediate correct protein folding or degrade misfolded proteins, were also upregulated. In contrast, the transcript level of hpf, whose product (Hpf) is involved in ribosome inactivation through the dimerization of 70S ribosomes, was downregulated during the growth arrest phase. Sucrose density gradient sedimentation analysis revealed that ribosomes were dissociated in a pressure-dependent manner and then reconstructed. We also found that cell growth after HHP-induced injury was apparently inhibited by the addition of Mn2+ or Zn2+ to the recovery medium. Ribosome reconstruction in the HHP-injured cells was also significantly delayed in the presence of Mn2+ or Zn2+ Moreover, Zn2+, but not Mn2+, promoted dimer formation of 70S ribosomes in the HHP-injured cells. Disruption of the hpf gene suppressed the Zn2+-dependent accumulation of ribosome dimers, partially relieving the inhibitory effect of Zn2+ on the growth recovery of HHP-treated cells. In contrast, it was likely that Mn2+ prevented ribosome reconstruction without stimulating ribosome dimerization. Our results suggested that both Mn2+ and Zn2+ can prevent ribosome reconstruction, thereby delaying the growth recovery of HHP-injured B. subtilis cells.IMPORTANCE HHP treatment is used as a nonthermal processing technology in the food industry to inactivate bacteria while retaining high quality of foods under suppressed chemical reactions. However, some populations of bacterial cells may survive the inactivation. Although the survivors are in a transient nongrowing state due to HHP-induced injury, they can recover from the injury and then start growing, depending on the postprocessing conditions. The recovery process in terms of cellular components after the injury remains unclear. Transcriptome analysis using vegetative cells of Bacillus subtilis revealed that the translational machinery can preferentially be reconstructed after HHP treatment. We found that both Mn2+ and Zn2+ prolonged the growth-arrested stage of HHP-injured cells by delaying ribosome reconstruction. It is likely that ribosome reconstruction is crucial for the recovery of growth ability in HHP-injured cells. This study provides further understanding of the recovery process in HHP-injured B. subtilis cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.