Abstract
Ribosome display is an in vitro selection and evolution technology for proteins and peptides from large libraries. As it is performed entirely in vitro, there are two main advantages over other selection technologies. First, the diversity of the library is not limited by the transformation efficiency of bacterial cells, but only by the number of ribosomes and different mRNA molecules present in the test tube. Second, random mutations can be introduced easily after each selection round, as no library must be transformed after any diversification step. This allows facile directed evolution of binding proteins over several generations. A prerequisite for the selection of proteins from libraries is the coupling of genotype (RNA, DNA) and phenotype (protein). In ribosome display, this link is accomplished during in vitro translation by stabilizing the complex consisting of the ribosome, the mRNA and the nascent, correctly folded polypeptide. The DNA library coding for a particular library of binding proteins is genetically fused to a spacer sequence lacking a stop codon. This spacer sequence, when translated, is still attached to the peptidyl tRNA and occupies the ribosomal tunnel, and thus allows the protein of interest to protrude out of the ribosome and fold. The ribosomal complexes are allowed to bind to surface-immobilized target. Whereas non-bound complexes are washed away, mRNA of the complexes displaying a binding polypeptide can be recovered, and thus, the genetic information of the binding polypeptides is available for analysis. Here we describe a step-by-step procedure to perform ribosome display selection using an Escherichia coli S30 extract for in vitro translation, based on the work originally described and further refined in our laboratory. A protocol that makes use of eukaryotic in vitro translation systems for ribosome display is also included in this issue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.