Abstract

Embryonic stem cells (ESCs) maintain a pluripotent state and genome integrity in long-term culture. A rare population of ESCs showing 2-cell embryo-specific gene expression is believed to play critical roles in sustainable pluripotency and genome stability. However, the molecular mechanism controlling this transition to a 2-cell embryo-like (2CL) state remains unclear. We carried out screening to search for the factors involved in 2CL state induction and found a ribosomal RNA processing factor, Pum3 to be a candidate. Increased 2CL state population accompanied with an accumulation of pre-ribosomal RNA and activated p53 in the Pum3-KO ESC. Furthermore, the increase of 2CL state cells in the Pum3-KO ESCs was completely abrogated by the deletion of p53. The DNA damage induced by the Ultraviolet light (UV) irradiation and Zeocin promoted the transition to a 2CL state in a p53-dependent manner. Thus, our study provides new insights into a 2CL state transition mechanism through stress-dependent p53 activation of ESCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call