Abstract

The cytoplasmic ribosomal RNA (rRNA) from the intestinal protozoan, Giardia lamblia, is unusually short; the large subunit (LS) and small subunit RNA and the 5.8S RNA are only 70–80% of the length found in typical protozoa, and are even smaller than most of their prokaryotic counterparts. Flanking regulatory DNA and processed rRNA sequences are similarly compact in size. To shed light on the origins and implications of this ‘minimal’ rRNA, the nucleotide sequence encoding the 5.8S RNA and domain I of LS RNA was determined. Secondary structure analysis revealed that an evolutionarily variable internal hairpin is partially ‘deleted’ in G. lamblia 5.8S RNA; the 3′-terminal pairing with LS RNA is conserved. Previously characterized eukaryotic ‘expansion’ regions are extensively shortened within the LS RNA; in one case, a hairpin is precisely ‘deleted’. The short sequences flanking the mature 5.8S RNA that are removed by RNA processing ( ITS 1 and ITS2) are C-rich; our analysis suggests that the sequence GCGCCCC, in a hairpin configuration, may function as the processing signal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.