Abstract

Pulse-labeled cells of Bacillus megaterium were converted to protoplasts, and lysates of the protoplasts were analyzed by sucrose gradient sedimentation. Precursor ribonucleoprotein (RNP) particles then appeared predominantly as 50S and 30S precursor ribosomal subunits. Polyacrylamide gel electrophoresis of the ribosomal ribonucleic acid from the 50S and 30S RNP particles confirmed their precursor nature since they were shown to contain precursor 23S and 16S ribosomal ribonucleic acid, respectively. Treatment of protoplast lysates with 0.5% deoxycholate prior to sedimentation analysis resulted in a markedly different radioactivity profile. The 50S RNP particles were no longer present, but 43S particles were observed in addition to increased amounts of pulse-labeled material sedimenting at 30S and slower. Extracts from cells broken in a French press showed a profile from sucrose gradient sedimentation similar to that of the deoxycholate-treated protoplast lysate. These data suggest that the nature of the precursor ribosomal particles appears to be a function of the method of cell disruption or detergent treatment of the cell extract preparation. The observed 50S and 30S RNP particles may be the major precursor ribosomal subunits in vivo; the slower-sedimenting species could result from some form of breakdown or change in the configuration of the 50S and 30S precursors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.