Abstract
As a preface to an analysis of the ribosomal elongation cycle, we examine the energetics of macromolecular structural transformations. We show that the kinetic barriers and changes of the energetic levels during these transformations are essentially determined by disruption of hydrogen and cation-ligand bonds, and by uncompensated losses of these bonds (ULBs). The disruption of a hydrogen or cation-ligand bond increases the heights of kinetic barriers by the energy of these bonds. The association and dissociation of macromolecules, and conformational transitions within macromolecules, can change the numbers of ULBs but cannot completely eliminate them. Two important general conclusions are drawn from this analysis. First, occupation of enzyme active centers by substrates should be accompanied by a reduction in the number of ULBs. This reduction decreases the activation barriers in enzyme reactions, and is a major contributor to catalysis. Second, the enzymic reactions of the ribosomal cycle (structural changes caused by transpeptidation and by GTP hydrolyses in EF-Tu and EF-G) disrupt kinetic traps that prevent tRNAs from dissociating into solution during their motion within the ribosome and are necessary for progression of the cycle. These results are general purpose structural-functional blocks for building a molecular model of the ribosomal elongation cycle. Here, we demonstrate the utility of these blocks for analysis of acceptance of cognate tRNAs into the ribosomal elongation cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.