Abstract

Previous research has shown that developing stages of the Antarctic sea urchin Sterechinus neumayeri have high rates of protein synthesis that are comparable to those of similar species living in much warmer waters. Direct measurements of the biosynthetic capacities of isolated ribosomes have not been reported for marine organisms living in the extreme-cold environment of Antarctica. Such measurements are required for a mechanistic understanding of how the critical and highly complex processes involved in protein synthesis are regulated in animals living in the coldest marine environment on Earth (< -1 degrees C). We tested the hypothesis that high rates of protein synthesis in the cold are a direct result of high biosynthetic capacities of ribosomes engaged in protein synthesis. Our results show that the rate at which ribosomes manufacture proteins (i.e., the peptide elongation rate) at -1 degrees C is surprisingly similar to rates measured in other sea urchin species at temperatures that are over 15 degrees C warmer. Average peptide elongation rates for a range of developmental stages of the Antarctic sea urchin were 0.36 codons s(-1) (+/- 0.05, SE). On the basis of subcellular rate determinations of ribosomal activity, we calculated stage-specific rates of protein synthesis for blastulae and gastrulae to be 3.7 and 6.5 ng protein h(-1), respectively. These findings support the conclusion that the high rates of biosynthesis previously reported for the Antarctic sea urchin are an outcome of high ribosomal activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call