Abstract

1. Cycloheximide causes the release of the control amino acids have over RNA synthesis in Saccharomyces carlsbergensis N.C.T.C. 74. 2. The antibiotic causes a gradual deceleration of RNA formation. After incubation for 60min. at 30 degrees RNA synthesis usually proceeds at a rate only a few per cent of that of the untreated control. 3. In the presence of cycloheximide two types of RNA accumulate in the cell: soluble RNA and a high-molecular-weight RNA. The latter has a base composition intermediate between those of yeast DNA and yeast ribosomal RNA, and sediments in a sucrose gradient at a rate faster than that of the 23s ribosomal RNA component. 4. Yeast ribosomal RNA contains methylated bases. Judged from the incorporation of [Me-(14)C]methionine, the extent of methylation of ribosomal RNA is about 20% of that of the ;soluble' RNA fraction. The high-molecular-weight RNA formed in the presence of cycloheximide is less methylated than normal RNA. In this case the sucrose-density-gradient sedimentation patterns of newly methylated and newly synthesized RNA do not coincide. 5. In the presence of cycloheximide, polysomal material accumulates, indicating that messenger RNA is formed. 6. The effect of the antibiotic on protein and RNA synthesis can be abolished by washing of the cells. The RNA that has accumulated during incubation of the cells with the antibiotic is not stable on removal of cycloheximide. 7. The results presented in this study are discussed in relation to the regulation of RNA formation in yeast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call