Abstract
Microbes can generate electricity in microbial fuel cells and transform contaminants in nature, utilizing extracellular electron transfer (EET). Fungi exist widely in environment but few studies have concerned an associated EET mechanism and so their application is limited. In this study electrochemical techniques were employed to study the extracellular reduction capability of fungi using a representative model viz. Pachysolen tannophilus; a solid electrode and soluble Cr(VI) were used as extracellular electron acceptors. Despite a thick cell wall, the yeast was proved to be electrochemically active and an obvious redox peak was observed at −0.41V in differential pulse voltammetry. Analysis of electrochemical and HPLC data led to the proposal of an EET with riboflavin as the electron transfer mediator. Riboflavin secreted by the yeast was also responsible for the transformation of Cr(VI) to less mobile and less toxic Cr(III). Further results demonstrated that the acidophilic P. tannophilus secreted riboflavin to a concentration of 0.26μmol/g biomass at pH 3, but only to 0.15-0.16μmol/g biomass at pHs between 4 and 7. The findings contribute to the understanding of biogeochemical processes and further contribute to innovative remediation of polluted environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.