Abstract

Numerous bacteria owe extracellular electron transport (EET) ability, and the rate enhancement of EET is critical for the emerging sensor technology to detect metabolically active pathogens. Here, the considerable enhancement of microbial current signal was firstly demonstrated in a thin layer electrolyte sandwiched between an agar substrate (AS) containing high concentration riboflavin (RF) and a screen-printed electrode. Covering cells with this AS showed a sharply current increase from 0.033 µA to 1.59 μA (47.7-folds) in EET-capable bacteria Shewanella oneidensis MR-1. Differential pulse voltammograms using gene-deletion mutant strains of S. oneidensis MR-1 revealed thin electrolyte between RF-loaded AS and electrode enhanced the rate of electron transfer via complexes between riboflavin and outer membrane c-type cytochrome. A similar effect in Streptococcus mutans UA159, a biofilm-forming pathogen, was also explored. Moreover, capturing and quantifying both metabolically active microbes from the dry solid surface are demonstrated with RF-loaded AS successfully. The considerable enhancement of the EET in the thin layer electrolyte provides a new direction for designing whole-cell biosensors and understanding a microbe/electrode interaction in a micro-sized space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.