Abstract

Carbon monoxide (CO), an endogenously produced gasotransmitter, regulates inflammation and vascular tone, suggesting that delivery of CO may be therapeutically useful for pathologies like preeclampsia where CO insufficiency is implicated. Our strategy is to identify chemicals that increase the activity of endogenous CO-producing enzymes, including cytochrome P-450 oxidoreductase (CPR). Realizing that both riboflavin and pyrroloquinoline quinone (PQQ) are relatively nontoxic, even at high doses, and that they share chemical properties with toxic CO activators that we previously identified, our goal was to determine whether riboflavin or PQQ could stimulate CO production. Riboflavin and PQQ were incubated in sealed vessels with rat and human tissue extracts and CO generation was measured with headspace-gas chromatography. Riboflavin and PQQ increased CO production ∼60% in rat spleen microsomes. In rat brain microsomes, riboflavin and PQQ increased respective CO production approximately fourfold and twofold compared to baseline. CO production by human placenta microsomes increased fourfold with riboflavin and fivefold with PQQ. In the presence of recombinant human CPR, CO production was threefold greater with PQQ than with riboflavin. These observations demonstrate for the first time that riboflavin and PQQ facilitate tissue-specific CO production with significant contributions from CPR. We propose a novel biochemical role for these nutrients in gastransmission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call