Abstract

BackgroundTranslation is a fundamental process in gene expression. Ribosome profiling is a method that enables the study of transcriptome-wide translation. A fundamental, technical challenge in analyzing Ribo-Seq data is identifying the A-site location on ribosome-protected mRNA fragments. Identification of the A-site is essential as it is at this location on the ribosome where a codon is translated into an amino acid. Incorrect assignment of a read to the A-site can lead to lower signal-to-noise ratio and loss of correlations necessary to understand the molecular factors influencing translation. Therefore, an easy-to-use and accurate analysis tool is needed to accurately identify the A-site locations.ResultsWe present RiboA, a web application that identifies the most accurate A-site location on a ribosome-protected mRNA fragment and generates the A-site read density profiles. It uses an Integer Programming method that reflects the biological fact that the A-site of actively translating ribosomes is generally located between the second codon and stop codon of a transcript, and utilizes a wide range of mRNA fragment sizes in and around the coding sequence (CDS). The web application is containerized with Docker, and it can be easily ported across platforms.ConclusionsThe Integer Programming method that RiboA utilizes is the most accurate in identifying the A-site on Ribo-Seq mRNA fragments compared to other methods. RiboA makes it easier for the community to use this method via a user-friendly and portable web application. In addition, RiboA supports reproducible analyses by tracking all the input datasets and parameters, and it provides enhanced visualization to facilitate scientific exploration. RiboA is available as a web service at https://a-site.vmhost.psu.edu/. The code is publicly available at https://github.com/obrien-lab/aip_web_docker under the MIT license.

Highlights

  • Translation is a fundamental process in gene expression

  • The Ribo-Seq dataset used in Fig. 1 is an S. cerevisiae dataset published in Jan et al [22] and the parameters were set to the default values

  • The offset table is color coded where green indicates that the most probable offset value can be uniquely identified for that fragment size and frame combination, while orange indicates that the offset value cannot be uniquely identified and both of the top two most probable offset values are listed

Read more

Summary

Results

We present RiboA, a web application that identifies the most accurate A-site location on a ribosome-protected mRNA fragment and generates the A-site read density profiles. It uses an Integer Programming method that reflects the biological fact that the A-site of actively translating ribosomes is generally located between the second codon and stop codon of a transcript, and utilizes a wide range of mRNA fragment sizes in and around the coding sequence (CDS). The web application is containerized with Docker, and it can be ported across platforms

Conclusions
Background
Results and discussion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.