Abstract

The ribbed mussel has been demonstrated to tolerate high levels of urban pollution and inhabits intertidal regions of the New York City estuary. The ability of this bivalve to filter bacteria raises the question of whether it can remove from the water column the fecal bacteria introduced to urban waterways by septic system leakage or sewer overflow. The study here addresses the hypothesis that ribbed mussel filters bacteria introduced by combined sewer overflow (CSO) discharge. Mussels and water were collected from a highly polluted region of the NYC estuary in order to conduct two sets of five trials for filtration of coliform and coccoid fecal indicator bacteria, respectively, Escherichia coli and Enterococcus species. Mussels and water samples were collected in proximity to a major CSO outfall within 1–2 days of a rainfall event to ensure high baseline values of bacterial contamination for filtration trials. For any given Enterococcus or E. coli trial, equal volume water samples were serially distributed across aerated tanks either containing a mussel or not. Comparison of with-mussel versus no-mussel tank water contamination across pooled trials showed significant (P < 0.05) reduction in water exposed to mussel filtration for both, Enterococcus and E. coli trials. For Enterococcus trials, measures of turbidity (suspended particle density) were taken concurrently with measures of bacterial contamination. Regression of contamination against turbidity, with measures standardized across trials, yielded a significant positive association (n = 50, P < 0.0001) across all tank water with a mussel. Thus, contamination reduction was associated with particle removal by mussel filtration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call