Abstract

The second-order Møller-Plesset perturbation theory (MP2) gradient using resolution of the identity approximation (RI-MP2 gradient) was combined with the fragment molecular orbital (FMO) method to evaluate the gradient including electron correlation for large molecules. In this study, we adopted a direct implementation of the RI-MP2 gradient, in which a characteristic feature of the FMO scheme was utilized. Test calculations with a small peptide presented a computational advantage of the RI-MP2 gradient over the canonical MP2 gradient. In addition, it was shown that the error of the RI-MP2 gradient, caused by RI approximation, was negligible. As an illustrative example, we performed gradient calculations for two biomolecules-a prion protein with GN8 and a human immunodeficiency virus type 1 (HIV1) protease with lopinavir (LPV). These calculations demonstrated that the gradient including the correlation effect could be evaluated with only about twice the computational effort of the Hartree-Fock (HF) gradient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.