Abstract

We present the vector, scalar, and tensor renormalization constants (RCs) using overlap fermions with either regularization independent momentum subtraction ($\mathrm{RI}/\mathrm{MOM}$) or symmetric momentum subtraction ($\mathrm{RI}/\mathrm{SMOM}$) as the intermediate scheme on the lattice with lattice spacings $a$ from 0.04 fm to 0.12 fm. Our gauge field configurations from the MILC and RBC/UKQCD collaborations include sea quarks using either the domain wall or the HISQ action, respectively. The results show that $\mathrm{RI}/\mathrm{MOM}$ and $\mathrm{RI}/\mathrm{SMOM}$ can provide consistent renormalization constants to the $\overline{\mathrm{MS}}$ scheme, after proper ${a}^{2}{p}^{2}$ extrapolations. But at $p\ensuremath{\sim}2\text{ }\text{ }\mathrm{GeV}$, both $\mathrm{RI}/\mathrm{MOM}$ and $\mathrm{RI}/\mathrm{SMOM}$ suffer from nonperturbative effects which cannot be removed by the perturbative matching. The comparison between the results with different sea actions also suggests that the renormalization constant is discernibly sensitive to the lattice spacing but not to the bare gauge coupling in the gauge action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.