Abstract

To understand the origination of sympathetic nerve discharge (SND), I developed an in vitro brain stem-spinal cord preparation from neonatal rats. Ascorbic acid (3 mM) was added into the bath solution to increase the viability of preparations. At 24 degrees C, rhythmic SND (recorded from the splanchnic nerve) was consistently observed, but it became quiescent at <16 degrees C. Respiratory-related SND (rSND) was discernible and was well correlated with C(4) root activity. Power spectral analysis of SND revealed a dominant 2-Hz oscillation. In most preparations (86%), such oscillation was persistent, whereas it only slightly reduced its magnitude after isolation from the brain stem. The removal of neural structures rostral to the superior cerebellar artery (equivalent to the level of facial nuclei) reduced rSND, increased tonic SND, but did not affect the temporal coupling between SND and C(4) root activity. Our data suggest a prominent contribution of SND from the neural mechanisms confined within the neonatal rat spinal cord. This ascorbic acid-enhanced in vitro preparation is a very useful model to study neural mechanisms underlying sympathorespiratory integration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call