Abstract

The oscillator of the circadian clock of cyanobacteria is composed of three proteins, KaiA, KaiB, and KaiC, which together generate a self-sustained ∼24-h rhythm of phosphorylation of KaiC. The mechanism propelling this oscillator has remained elusive, however. We show that stacking interactions between the CI and CII rings of KaiC drive the transition from the phosphorylation-specific KaiC-KaiA interaction to the dephosphorylation-specific KaiC-KaiB interaction. We have identified the KaiB-binding site, which is on the CI domain. This site is hidden when CI domains are associated as a hexameric ring. However, stacking of the CI and CII rings exposes the KaiB-binding site. Because the clock output protein SasA also binds to CI and competes with KaiB for binding, ring stacking likely regulates clock output. We demonstrate that ADP can expose the KaiB-binding site in the absence of ring stacking, providing an explanation for how it can reset the clock.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.