Abstract

We observed the collective motion of colloidal particles moving along a circular path in water as a model system of artificial active matter. The particles were driven by optical vortex using holographic optical tweezer. They exhibit rhythmic motion with spontaneous formation of clusters and their dissociation by hydrodynamic interaction. The hydrodynamic interaction in spatially confined system alter their rhythmic motion dramatically. For example, we found that the relative magnitude of the angular velocity for a doublet to a singlet reversed in free space and in strongly confined system. The transition of rhythmic motions was observed by varying spatial confinement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.