Abstract

The pineal gland, through nocturnal melatonin, acts as a neuroendocrine transducer of daily and seasonal time. Melatonin synthesis is driven by rhythmic activation of the rate-limiting enzyme, arylalkylamine N-acetyltransferase (AA-NAT). In ungulates, AA-NAT mRNA is constitutively high throughout the 24-h cycle, and melatonin production is primarily controlled through effects on AA-NAT enzyme activity; this is in contrast to dominant transcriptional control in rodents. To determine whether there has been a selective loss of circadian control of AA-NAT mRNA expression in the sheep pineal, we measured the expression of other genes known to be rhythmic in rodents (inducible cAMP early repressor ICER, the circadian clock genes Period1 and Cryptochrome1, as well as AA-NAT). We first assayed gene expression in pineal glands collected from Soay sheep adapted to short days (Light: dark, 8-h: 16-h), and killed at 4-h intervals through 24-h. We found no evidence for rhythmic expression of ICER, AA-NAT or Cryptochrome1 under these conditions, whilst Period1 showed a low amplitude rhythm of expression, with higher values during the dark period. In a second group of animals, lights out was delayed by 8-h during the final 24-h sampling period, a manipulation that causes an immediate shortening of the period of melatonin secretion. This did not significantly affect the expression of ICER, AA-NAT or Cryptochrome1 in the pineal, whilst a slight suppressive effect on overall Per1 levels was observed. The attenuated response to photoperiod change appears to be specific to the ovine pineal, as the first long day induced rapid changes of Period1 and ICER expression in the hypothalamic suprachiasmatic nuclei and pituitary pars tuberalis, respectively. Overall, our data suggest a general reduction of circadian control of transcript abundance in the ovine pineal gland, consistent with a marked evolutionary divergence in the mechanism regulating melatonin production between terrestrial ruminants and fossorial rodents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.