Abstract

The oscillatory phenomenon of the oxidative reaction of CO on an n-type semiconductor surface is reported. As a semiconductor, we used a SnO 2 gas sensor, which is widely used for practical application. Various characteristics in the time series of the conductance were observed and analyzed with next amplitude mapping and Fourier power spectra. The simultaneous measurement of the temperature on the semiconductor surface and the conductance suggested that the temperature change was a key variable in the oscillatory phenomenon. As a preliminary theoretical model, a simulation was performed using the surface concentration of CO and the temperature as two independent variables. The present study is part of our attempt to use a time-dependent nonlinear response for the development of an intelligent sensor which mimics sensory mechanisms in living organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.