Abstract

Recent reports indicate that rhythmic and discrete upper-limb movements are two different motor primitives which recruit, at least partially, distinct neural circuitries. In particular, rhythmic movements recruit a smaller cortical network than discrete movements. The goal of this paper is to compare the levels of disability in performing rhythmic and discrete movements after a stroke. More precisely, we tested the hypothesis that rhythmic movements should be less affected than discrete ones, because they recruit neural circuitries that are less likely to be damaged by the stroke. Eleven stroke patients and eleven age-matched control subjects performed discrete and rhythmic movements using an end-effector robot (REAplan). The rhythmic movement condition was performed with and without visual targets to further decrease cortical recruitment. Movement kinematics was analyzed through specific metrics, capturing the degree of smoothness and harmonicity. We reported three main observations: (1) the movement smoothness of the paretic arm was more severely degraded for discrete movements than rhythmic movements; (2) most of the patients performed rhythmic movements with a lower harmonicity than controls; and (3) visually guided rhythmic movements were more altered than non-visually guided rhythmic movements. These results suggest a hierarchy in the levels of impairment: Discrete movements are more affected than rhythmic ones, which are more affected if they are visually guided. These results are a new illustration that discrete and rhythmic movements are two fundamental primitives in upper-limb movements. Moreover, this hierarchy of impairment opens new post-stroke rehabilitation perspectives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call