Abstract

In a recent conference paper, we have reported a rhythm transcription method based on a merged-output hidden Markov model (HMM) that explicitly describes the multiple-voice structure of polyphonic music. This model solves a major problem of conventional methods that could not properly describe the nature of multiple voices as in polyrhythmic scores or in the phenomenon of loose synchrony between voices. In this paper we present a complete description of the proposed model and develop an inference technique, which is valid for any merged-output HMMs for which output probabilities depend on past events. We also examine the influence of the architecture and parameters of the method in terms of accuracies of rhythm transcription and voice separation and perform comparative evaluations with six other algorithms. Using MIDI recordings of classical piano pieces, we found that the proposed model outperformed other methods by more than 12 points in the accuracy for polyrhythmic performances and performed almost as good as the best one for non-polyrhythmic performances. This reveals the state-of-the-art methods of rhythm transcription for the first time in the literature. Publicly available source codes are also provided for future comparisons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.