Abstract

The petioles of red rhubarb are load-bearing structures which need to combine sufficient stiffness with high toughness. Although mostly consisting out of water, the petioles showed a remarkable Charpy impact strength, partly based on their beam-like structure: outermost bark fibre bundles provide stiffness and strength, and surround a core reinforced with ductile vascular bundles, which dissipate impact energy at two hierarchical levels: helical fibres in the vascular bundles are straightened, and both helical fibres and bundles are pulled-out of the parenchyma. Using technical composites made from stiff and ductile cellulose fibres as a model system, we investigated the functional significance of the fibre arrangement further. The impact resistance of bio-inspired composites exceeded that of composites with identical fibre-fraction but random fibre-distribution by more than a factor of two, while their tensile and flexural properties did not differ significantly, suggesting promising new routes for the design of tough, bio-compatible composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.