Abstract
Imbalance data are defined as a dataset whose proportion of classes is severely skewed. Classification performance of existing models tends to deteriorate due to class distribution imbalance. In addition, over-representation by majority classes prevents a classifier from paying attention to minority classes, which are generally more interesting. An effective ensemble classification method called RHSBoost has been proposed to address the imbalance classification problem. This classification rule uses random undersampling and ROSE sampling under a boosting scheme. According to the experimental results, RHSBoost appears to be an attractive classification model for imbalance data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.