Abstract

The u-d quark-loop vacuum polarization process that mixes the {omega} and {rho} mesons and its contribution to the Charge-Symmetry-Breaking (CSB) piece of the nucleon-nucleon (NN) interaction has been studied in a QCD-based, model field theory: the Global Color-symmetry Model (GCM), using a confining quark propagator obtained in earlier studies. In fitting NN phase shifts it was found necessary to include a term in the NN potential that has, conventionally, been attributed to the mixing between {omega} and {rho} mesons that arises because of isospin asymmetry at the quark level, as manifest in the small u-d current-quark-mass difference. To the present, this term was modeled and assumed to be momentum independent. It is important to understand this term in the context of QCD. The results of this study indicate that the modification of the meson propagators produced by the quark loop is alone not sufficient to account for the observed charge symmetry breaking effects in the NN interaction. We are exploring other possible mechanisms which may describe the origin of CSB in the NN interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.