Abstract

Strongly correlated oxides exhibit multiple degrees of freedoms, which can potentially mediate exotic phases with exciting physical properties, such as the polar vortex recently found in ferroelectric oxide films. A polar vortex is stabilized by competition between charge, lattice, and/or orbital degrees of freedom, which displays vortex-ferroelectric phase transitions and emergent chirality, making it a potential candidate for designing information storage and processing devices. Here, by a combination of controlled film growth and aberration-corrected scanning transmission electron microscopy, we obtain nanoscale vortex arrays in [110]-oriented BiFeO3 films. These vortex arrays are stabilized in ultrathin BiFeO3 layers sandwiched by two coherently grown orthorhombic scandate layers, exhibiting a ferroelectric morphotropic phase boundary constituted by a mixed-phase structure of polar orthorhombic BiFeO3 and rhombohedral BiFeO3. Clear polarization switching and piezoelectric signals were observed in these multilayers as revealed by piezoresponse force microscopy. This work presents a feature of a polar vortex in BiFeO3 films showing morphotropic phase boundary character, which offers a potential degree of manipulating phase components and properties of ferroelectric topological structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.