Abstract
ObjectivesRhoE and regulator of G-proteins signalling (RGS) 2 were identified as the up-regulated genes in human periodontal ligament (PDL) cells under compression. RhoE belongs to the Rho GTPase family, and RGS2, a novel family of GTPase-activating proteins, turns off the G-protein signalling. Rho family proteins have recently been known to regulate actin cytoskeleton dynamics in various cell types. In this study, we investigated the involvement of RhoE and RGS2 in the regulation of actin filament organization in the PDL cells under mechanical stress. MethodsHuman PDL cells were cultured and subjected to a static compressive force (3.0g/cm2) for 48h. To observe changes in the actin cytoskeleton and the expression of RhoE and RGS2 in response to mechanical stress, immunofluorescence analysis was performed. To examine the role of RhoE and RGS2 in actin filament organization, cells were transfected with antisense S-oligonucleotides (ODNs) to RhoE and RGS2. ResultsCompressive force caused a loss and disassembly of actin stress fibres leading to cell spreading. Immunocytochemical study revealed that RhoE and RGS2 expressions were induced by mechanical stress and localized in the perinuclear and in the cell membrane, respectively. The impaired formation of stress fibres caused by compressive forces was recovered by treatment with antisense S-ODN to RhoE to the control levels. However, addition of antisense S-ODN to RGS2 did not affect the stress fibre formation. ConclusionsThese results indicate that the loss and disassembly of stress fibres due to mechanical stress are mediating RhoE signalling, without the exertion of RGS2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.