Abstract

The visual signaling pathway is initiated by photoactivation of the GPCR rhodopsin, which activates nucleotide exchange on the heterotrimeric G-protein transducin (Gt). Domains on both Gtalpha and Gtbetagamma subunits participate in coupling to rhodopsin. Previously, we have shown by high-resolution NMR that the farnesylated C-terminal peptide of Gtgamma(60-71), DKNPFKELKGGC, assumes an amphipathic helical conformation during interaction with metarhodopsin II [Kisselev, O. G., and Downs, M. A. (2003) Structure 11, 367-373]. This conformation was docked to the structure of holo-Gt to create a model of rhodopsin-Gt interaction. Here we test this model by mutational analysis of Gt. To evaluate the contribution of specific amino acids of the Gtgamma C-terminal region involved in binding and GTP-dependent release of transducin from native rhodopsin membranes, we have systematically substituted each of the amino acids in the C-terminal region of Gtgamma for alanine. The mutants were co-expressed with six-histidine-tagged Gtbeta subunits in Sf9 insect cells. The Gtbeta-6-His-gamma mutant proteins were purified and assayed in the presence of Gtalpha for the GTP-dependent interactions with light-activated rhodopsin. Several of the alanine mutants, N62A, P63A, and F64A, exhibited significant functional defects at the level of R*-Gt complex formation. These data show that the conserved N-terminal end of the helical domain in the Gtgamma(60-71) region has the most significant effect on rhodopsin-Gt interactions, which places important constraints on the model of the rhodopsin-Gt complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call