Abstract

The elucidation of structure-function relationships of membrane proteins still poses a considerable challenge due to the sometimes profound influence of the lipid bilayer on the functional properties of the protein. The visual pigment rhodopsin is a prototype of the family of G protein-coupled transmembrane receptors and a considerable part of our knowledge on its activation mechanisms has been derived from studies on detergent-solubilized proteins. This includes in particular the events associated with the conformational transitions of the receptor from the still inactive Meta I to the Meta II photoproduct states, which are involved in signaling. These events involve disruption of an internal salt bridge of the retinal protonated Schiff base, movement of helices and proton uptake from the solvent by the conserved cytoplasmic E(D)RY network around Glu134. As the equilibria associated with these events are considerably altered by the detergent environment, we set out to investigate these equilibria in the native membrane environment and to develop a coherent thermodynamic model of these activating steps using UV-visible and Fourier-transform infrared spectroscopy as complementary techniques. Particular emphasis is put on the role of protonation of Glu134 from the solvent, which is a thermodynamic prerequisite for full receptor activation in membranes, but not in detergent. In view of the conservation of this carboxylate group in family A G protein-coupled receptors, it may also play a similar role in the activation of other family members.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.