Abstract
To further investigate the diversity of micro-organisms capable of conserving energy to support growth from dissimilatory Fe(III) reduction, Fe(III)-reducing micro-organisms were enriched and isolated from subsurface sediments collected in Oyster Bay, VA, USA. A novel isolate, designated T118(T), was recovered in a medium with lactate as the sole electron donor and Fe(III) as the sole electron acceptor. Cells of T1 18(T) were Gram-negative, motile, short rods with a single polar flagellum. Strain T1 18(T) grew between pH 6.7 and 7.1, with a temperature range of 4-30 degrees C. The optimal growth temperature was 25 degrees C. Electron donors utilized by strain T1 18(T) with Fe(III) as the sole electron acceptor included acetate, lactate, malate, propionate, pyruvate, succinate and benzoate. None of the compounds tested was fermented. Electron acceptors utilized with either acetate or lactate as the electron donor included Fe(III)-NTA (nitrilotriacetic acid), Mn(IV) oxide, nitrate, fumarate and oxygen. Phylogenetic analysis demonstrated that strain T1 18(T) is most closely related to the genus Rhodoferax. Unlike other species in this genus, strain T1 18(T) is not a phototroph and does not ferment fructose. However, phototrophic genes may be present but not expressed under the experimental conditions tested. No Rhodoferax species have been reported to grow via dissimilatory Fe(III) reduction. Based on these physiological and phylogenetic differences, strain T1 18(T) (=ATCC BAA-621(T) = DSM 15236(T)) is proposed as a novel species, Rhodoferax ferrireducens sp. nov.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.