Abstract

Several parameters are involved in bacterial adhesion and biofilm formation including surface type, medium composition and cellular surface hydrophobicty. When the cells are placed inside tubes, parameters such as oxygen availability should also influence cell adhesion. To understand which cellular lipids are involved in the molecular events of biofilm formation in Rhodococcus erythropolis, cell adhesion was promoted on different metallic and non-metallic surfaces immersed in culture media. These cells were able to modulate the fatty acid composition of the cell membrane in response to both the surface to which they adhered and the growth medium used. To assess the response of the cells to both surfaces and operational conditions, biofilms were also promoted inside a reactor built with five different types of tubes and with medium recirculation. The biofilm biomass could be directly related not to the hydrophobicity of the tubes used but to the oxygen permeability of the tubes. Besides this, cell age influenced the adhesion of the R. erythropolis cells to the tubes. Principal component analysis showed that the lipid composition of the cells could separate cells attached to metallic from those on non-metallic surfaces in the plane formed by PC1 and PC2, and influence biofilm biomass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.