Abstract

Expression of nitrogen fixation genes in Rhodobacter capsulatus is repressed by ammonium at different regulatory levels including an NtrC-independent mechanism controlling NifA activity. In contrast to R. capsulatus NifA, heterologous NifA proteins of Klebsiella pneumoniae and Rhizobium meliloti, respectively, were not subjected to this posttranslational ammonium control in R. capsulatus. The characterization of ammonium-tolerant R. capsulatus NifA1 mutants indicated that the N-terminal domain of NifA was involved in posttranslational regulation. Analysis of a double mutant carrying amino acid substitutions in both the N-terminal domain and the C-terminal DNA-binding domain gave rise to the hypothesis that an interaction between these two domains might be involved in ammonium regulation of NifA activity. Western analysis demonstrated that both constitutively expressed wild-type and ammonium-tolerant NifA1 proteins exhibited high stability and accumulated to comparable levels in cells grown in the presence of ammonium excluding the possibility that proteolytic degradation was responsible for ammonium-dependent inactivation of NifA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.