Abstract

Enol esters are versatile synthetic building blocks which can be elaborated by a wide variety of transformations. The classical synthesis by O-selective enolate acylation often hampers control of the E/Z selectivity with highly substituted substrates. A rhodium(III)/copper(II)-mediated process is reported to provide tetrasubstituted enol esters in a trans-selective fashion. Overall, the reaction consists of a heteroaryl acyloxylation of alkynes. The process is initiated by a rhodium(III)-catalyzed C2-selective activation of electron-rich heteroarenes, such as benzofuran, furan, and thiophene. Upon addition across an alkyne, a transmetalation to copper(II) enables reductive CO bond formation. The transformation allows the three-component couplings of heteroarenes, alkynes, and carboxylic acids. Application of the method in the functionalization of bioactive furocoumarin natural products is also described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.