Abstract

The rhodium(II)-catalyzed reaction of α-diazo ketones bearing tethered alkyne units represents a new and useful method for the construction of a variety of substituted cyclopentenones. The process proceeds by addition of the rhodium-stabilized carbenoid onto the acetylenic π-bond to give a vinyl carbenoid intermediate. The resulting rhodium complex undergoes a wide assortment of reactions including cyclopropanation, 1,2-hydrogen migration, CH-insertion, addition to tethered alkynes and ylide formation. The exact pathway followed is dependent on the specific metal/ligand employed and is also influenced by the nature of the solvent. Sulfonium ylide formation occurred both intra and intermolecularly when the reaction was carried out in the presence of a sulfide. In the case where an ether oxygen was present on the backbone of the vinyl carbenoid, cyclization afforded an oxonium ylide which underwent a [1,2] or [2,3]-sigmatropic shift to give a rearranged product. These cyclic metallocarbenoids were also found to interact with a neighboring carbonyl π-bond to produce carbonyl ylide dipoles that could be trapped with added dipolarophiles. The domino transformation was also performed intramolecularly by attaching an alkene directly to the carbonyl group. When 2-alkynyl-2-diazo-3-oxobutanoates were treated with a Rh(II)-catalyst, furo[3,4-c]furans were formed in excellent yield. The 1,5-electrocyclization process involved in furan formation has also been utilized to produce indeno[1,2-c]furans. Rotamer population was found to play a significant role in the cyclization of α-diazo amide systems containing tethered alkynes. In this account, an overview of our work in this area is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call