Abstract
Although progress has been made in enantioselective hydroboration of di- and trisubstituted alkenes over the past decades, enantioselective hydroboration of tetrasubstituted alkenes with high diastereo- and enantioselectivities continues as an unmet challenge since the 1950s due to its extremely low reactivity and the difficulties to simultaneously control the regio- and stereoselectivity of a tetrasubstituted alkene. Here, we report highly regio-, diastereo-, and enantioselective catalytic hydroboration of diverse acyclic tetrasubstituted alkenes. The delicate interplay of an electron-rich rhodium complex and coordination-assistance forms a highly adaptive catalyst that effectively overcomes the low reactivity and controls the stereoselectivity. The generality of the catalyst system is exemplified by its efficacy across various tetrasubstituted alkenes with diverse steric and electronic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.