Abstract

Bacterial strains 2APBS1(T) and 116-2 were isolated from the subsurface of a nuclear legacy waste site where the sediments are co-contaminated with large amounts of acids, nitrate, metal radionuclides and other heavy metals. A combination of physiological and genetic assays indicated that these strains represent the first member of the genus Rhodanobacter shown to be capable of complete denitrification. Cells of strain 2APBS1(T) and 116-2 were Gram-negative, non-spore-forming rods, 3-5 µm long and 0.25-0.5 µm in diameter. The isolates were facultative anaerobes, and had temperature and pH optima for growth of 30 °C and pH 6.5; they were able to tolerate up to 2.0 % NaCl, although growth improved in its absence. Strains 2APBS1(T) and 116-2 contained fatty acid and quinone (ubiquinone-8; 100 %) profiles that are characteristic features of the genus Rhodanobacter. Although strains 2APBS1(T) and 116-2 shared high 16S rRNA gene sequence similarity with Rhodanobacter thiooxydans LCS2(T) (>99 %), levels of DNA-DNA relatedness between these strains were substantially below the 70 % threshold used to designate novel species. Thus, based on genotypic, phylogenetic, chemotaxonomic and physiological differences, strains 2APBS1(T) and 116-2 are considered to represent a single novel species of the genus Rhodanobacter, for which the name Rhodanobacter denitrificans sp. nov. is proposed. The type strain is 2APBS1(T) ( = DSM 23569(T) = JCM 17641(T)).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.