Abstract

A new rhodamine 6G-based chemosensor (L3) was synthesized and characterized by 1H, 13C, IR and mass spectroscopy studies. It exhibited an excellent selective and sensitive CHEF-based recognition of trivalent metal ions M3+ (M = Fe, Al and Cr) over mono and di-valent and other trivalent metal ions with prominent enhancement in the absorption and fluorescence intensity for Fe3+ (669-fold), Al3+ (653-fold) and Cr3+ (667-fold) upon the addition of 2.6 equivalent of these metal ions in the probe in H2O/CH3CN (7 : 3, v/v, pH 7.2). The corresponding Kd values were evaluated to be 1.94 × 10-5 (Fe3+), 3.15 × 10-5 (Al3+) and 2.26 × 10-5 M (Cr3+). The quantum yields of L3, [L3-Fe3+], [L3-Al3+] and [L3-Cr3+] complexes in H2O/CH3CN (7 : 3, v/v, pH 7.2) were found to be 0.0005, 0.335, 0.327 and 0.333, respectively, using rhodamine-6G as the standard. The LODs for Fe3+, Al3+ and Cr3+ were determined by 3σ methods and found to be 2.57, 0.78 and 0.47 μM, respectively. The cyanide ion snatched Fe3+ from the [Fe3+-L3] complex and quenched its fluorescence via its ring-closed spirolactam form. Advanced level molecular logic devices using different inputs (2 and 4 input) and a memory device were constructed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call