Abstract

Rhodamine-6G photosensitized folic acid decomposition in aqueous solution, and its quantum yield in the presence of 10μM folic acid was 9.9×10−6. A possible mechanism of this photodecomposition is direct oxidation through an electron transfer from folic acid to rhodamine-6G. The fluorescence lifetime of rhodamine-6G was slightly decreased by folic acid, suggesting electron transfer in the excited singlet state of rhodamine-6G. The quenching rate coefficient estimated from the Stern–Volmer plot of the fluorescence quenching supported that this electron transfer proceeds as a diffusion-controlled reaction. The quantum yields of the electron transfer and the following reaction could be determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.