Abstract

The regulation of morphological changes in eukaryotic cells is a complex process involving major components of the cytoskeleton including actin microfilaments, microtubules, and intermediate filaments (IFs). The putative effector of RhoA, RhoA-binding kinase alpha (ROKalpha), is a serine/threonine kinase that has been implicated in the reorganization of actin filaments and in myosin contractility. Here, we show that ROKalpha also directly affects the structural integrity of IFs. Overexpression of active ROKalpha, like that of RhoA, caused the collapse of filamentous vimentin, a type III IF. A RhoA-binding-deficient, kinase-inactive ROKalpha inhibited the collapse of vimentin IFs induced by RhoA in HeLa cells. In vitro, ROKalpha bound and phosphorylated vimentin at its head-rod domain, thereby inhibiting the assembly of vimentin. ROKalpha colocalized predominantly with the filamentous vimentin network, which remained intact in serum-starved cells. Treatment of cells with vinblastine, a microtubule-disrupting agent, also resulted in filamentous vimentin collapse and concomitant ROKalpha translocation to the cell periphery. ROKalpha translocation did not occur when the vimentin network remained intact in vinblastine-treated cells at 4 degreesC or in the presence of the dominant-negative RhoAN19 mutant. Transient translocation of ROKalpha was also observed in cells subjected to heat shock, which caused the disassembly of the vimentin network. Thus, the translocation of ROKalpha to the cell periphery upon overexpression of RhoAV14 or growth factor treatment is associated with disassembly of vimentin IFs. These results indicate that Rho effectors known to act on microfilaments may be involved in regulating the assembly of IFs. Vimentin when phosphorylated also exhibits reduced affinity for the inactive ROKalpha. The translocation of ROKalpha from IFs to the cell periphery upon action by activated RhoA and ROKalpha suggests that ROKalpha may initiate its own cascade of activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call